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The one-dimensional repulsive SU�n� Hubbard model is investigated analytically by bosonization approach
and numerically using the density-matrix renormalization-group method for n=3, 4, and 5 for commensurate
fillings f = p /q, where p and q are relatively primes. It is shown that the behavior of the system is drastically
different depending on whether q�n, q=n, or q�n. When q�n, the umklapp processes are irrelevant and the
model is equivalent to an n-component Luttinger liquid with central charge c=n. When q=n, the charge and
spin modes are decoupled, the umklapp processes open a charge gap for finite U�0, whereas the spin modes
remain gapless and the central charge c=n−1. The translational symmetry is not broken in the ground state for
any n. On the other hand, when q�n, the charge and spin modes are coupled, the umklapp processes open
gaps in all excitation branches, and a spatially nonuniform ground state develops. Bond-ordered dimerized,
trimerized, or tetramerized phases are found depending on the filling.
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I. INTRODUCTION

Recently, the SU�n�-symmetric generalization of the stan-
dard SU�2� Hubbard model1 has been intensively studied
theoretically.2–9 Apart from its theoretical interest, this model
may mimic strongly correlated electron systems where the
orbital degrees of freedom of d and f electrons play an im-
portant role and these extra degrees of freedom are taken into
account by considering n-component fermions. On the other
hand, ultracold gases in optical lattices may also be simu-
lated by such multicomponent models.

The Hamiltonian of the model is usually written in the
form

H = − t�
i=1

N

�
�=1

n

�ci,�
† ci+1,� + ci+1,�

† ci,�� +
U

2 �
i=1

N

�
�,��=1

����

n

ni,�ni,��,

�1�

where N is the number of sites in the chain. The operator ci,�
†

�ci,�� creates �annihilates� an electron at site i with spin �,
where the spin index is allowed to take n different values.
ni,� is the particle-number operator, t is the hopping integral
between nearest-neighbor sites, and U is the strength of the
on-site Coulomb repulsion. In what follows, t will be taken
as the unit of energy.

The model behaves as an n-component Tomonaga-
Luttinger liquid at generic fillings. Other types of behavior
may appear at commensurate fillings due to umklapp pro-
cesses. The possible phases, their nature, and the critical cou-
pling where they appear have been studied in detail for two
special commensurate fillings of the band, namely, for half
filling and 1 /n filling.2–9 It is well established by now that
the ground state is a fully gapped bond-ordered dimerized
state in the half-filled case for any n�2. Contrary to this, the
ground state remains translationally invariant in the
1 /n-filled case, and only the charge mode acquires a gap for
U�Uc. While Assaraf et al.3 argued that Uc is finite, our
recent numerical work9 has suggested a much less, perhaps

Uc=0 critical value above which multiparticle umklapp pro-
cesses become relevant.

It is worth mentioning that the SU�n� Hubbard model has
a rich phase diagram in the attractive case, too.10,11 The one-
third-filled SU�3� model has two distinct phases in the high-
dimensional limit. In one of them, the fermions form trions,
while in the other phase, a color superfluid state emerges.
The existence of these phases is not yet settled in one dimen-
sion.

In the present paper, the role of multiparticle umklapp
processes will be further analyzed for general commensurate
fillings f = p /q, where p and q are relatively primes. We try to
establish under what conditions the umklapp processes can
generate gaps in the charge or spin sectors, and when and
how the translational symmetry is broken. To this end, partly
analytic, partly numerical procedures will be applied. We
will generalize the method used in Ref. 2 to the one-third-
filled SU�n� model to show analytically that the ground state
cannot be spatially uniform. It is trimerized at least in the
large-n limit. The numerical work will show that, in fact, this
trimerized state with gapped excitations exists for n�3 al-
ready.

In the numerical part, the length dependence of the en-
tropy of finite blocks of a long chain is studied. Recently, it
has been shown that quantum phase transitions can be con-
veniently studied by calculating some measure of
entanglement.12–20 This can either be a local quantity, e.g.,
the concurrence,21 a global quantity, e.g., the fidelity,22 or the
entropy of a block of several sites.23 As has been demon-
strated recently,24 the oscillatory behavior of the block en-
tropy can reveal the position of soft modes in the excitation
spectrum of critical systems or the spatial inhomogeneity of
gapped models. This will allow us to demonstrate that at
commensurate fillings f = p /q, the type of ground state of the
one-dimensional SU�n� models depends on whether q=n,
q�n, or q�n.

The paper is organized as follows. The oscillatory behav-
ior of the block entropy, the corresponding peaks in its Fou-
rier spectrum, and their relationship to the known properties
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of the half-filled and 1 /n-filled models are recalled in Sec. II,
where some results necessitating further studies are also
given. An analytical investigation of the role of umklapp
processes at commensurate fillings is presented in Sec. III
and the possibility of spatial inhomogeneity of the ground
state is discussed. The numerical results for various fillings
are presented in Sec. IV. Finally, our findings and conclu-
sions are summarized in Sec. V.

II. OSCILLATORY LENGTH DEPENDENCE
OF THE BLOCK ENTROPY

If a finite block of length l of a long chain of N sites is
considered, it is in a mixed state, even if the long chain is in
its ground state. The mixed state can be described by a den-
sity matrix �N�l� and the corresponding von Neumann en-
tropy is

sN�l� = − Tr��N�l�ln �N�l�� . �2�

It is well known23,25 that this entropy as a function of the
block size grows logarithmically if the system is critical and
the spectrum is gapless. In addition, the central charge c can
be derived26,27 from the initial slope of the length depen-
dence of sN�l�,

sN�l� =
c

6
ln�2N

�
sin��l

N
�	 + g , �3�

where g is a shift due to the open boundary. It contains a
constant term which depends on the ground-state degeneracy
and an alternating term decaying with a power of the dis-
tance from the boundary.28,29 On the other hand, for noncriti-
cal, gapped models, sN�l� saturates to a finite value when l is
far from the boundaries.

Recently, it has been pointed out by some of us24 that a
wider variety of behavior may be found for the length de-
pendence of the block entropy. Namely, we have shown that
in some cases, oscillations may appear in sN�l�. This can be
best analyzed by considering the Fourier transform

s̃�k� =
1

N
�
l=0

N

e−iklsN�l� , �4�

for discrete wave numbers, where k=2�j /N lying in the
range �−� ,��. Since sN�l�=sN�N− l�, s̃�k� is real. It has a
large peak at k=0 and all other Fourier components are nega-
tive. Peaks in 
s̃�k�
 carry information about the position of
soft modes or the spatial inhomogeneity of the ground state.
More precisely, if the amplitude of a peak at a nonzero wave
number k* remains finite in the thermodynamic limit, this
indicates a periodic spatial modulation of the ground state
with wavelength �=2� /k*. On the other hand, if a marked
peak appears in 
s̃�k�
 but its amplitude vanishes as N→�,
this allows us to identify the wave vector of soft modes in
critical models.

In a recent work,9 we have shown that such oscillations
appear in sN�l� for the SU�n� Hubbard model as well. The
periodicity depends on both n and the band filling f = p /q.
This is shown for the n=3 and n=4 models for the 1 /n-

filled and half-filled cases in Fig. 1 for a large value of U
�U=10�.

In the 1 /n-filled cases, sN�l� increases logarithmically
with the block length �and then goes down as l approaches
N�. When every third or fourth values are taken, depending
on the periodicity, these selected values can be fitted to �3�,
as shown by the solid lines in panels �a� and �c�. This indi-
cates a gapless behavior and gives c=n−1. This is in agree-
ment with the theoretical expectation since the charge mode
becomes gapped due to multiparticle umklapp processes and
only the n−1 spin modes are gapless. A distinct behavior is
found in half-filled systems, as seen in panels �b� and �d�.
The quantity sN�l� oscillates with period 2, and if only every
second point is taken, it seems to saturate beyond some block
length, before decreasing again, indicating that the corre-
sponding models are fully gapped.

The finite-size dependence of the peaks of 
s̃�k�
 appearing
at k*=2kF=2�f characterizing the oscillation is shown in
Fig. 2. It is seen that in the 1 /n-filled case, the Fourier com-
ponents at k*=2� /n vanish in the thermodynamic limit,
while a finite value is obtained at k*=� for half-filled mod-
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FIG. 1. Block entropy sN�l� of finite chains with N=18 and
N=16 sites, respectively, for n=3 and 4 at fillings f =1 /n and
f =1 /2 for U=10. The solid line is our fit using Eq. �3�.
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FIG. 2. �Color online� Finite-size dependence of 
s̃�k*�
 for vari-
ous n and fillings for U=10. The solid line is the finite-size-scaling
fit.
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els. This corroborates our finding that the 1 /n-filled SU�n�
models are critical with a spatially uniform ground state,
while a gapped bond-ordered dimerized phase appears at half
filling.

We have done similar calculations for more general com-
mensurate fillings of the band. Figure 3 shows the results
obtained for n=3, f =2 /5 as well as for n=4, f =1 /3. When
every fifth points are taken for the f =2 /5 filled SU�3� model,
they can be fitted to �3�, yielding c=3 for the central charge.
This indicates that all modes, including the charge mode, are
gapless.

Such a fit does not work for the one-third-filled SU�4�
model. To better see the difference, 
s̃�k�
 is considered again.
The amplitude of the Fourier component at k*=4� /5, also
displayed in Fig. 2 for the n=3 model, vanishes in the
N→� limit. On the other hand, 
s̃�k�
 remains finite at
k*=2� /3 in the one-third-filled n=4 model.

When the same calculations are repeated for the n=5
model at f =1 /2,1 /3,1 /4, and 1 /5, peaks appear in 
s̃�k�
 at
k*=�, 2� /3, � /2, and 2� /5, respectively. As is seen in Fig.
4, the amplitude of the peaks remains finite even when
N→� in the first three cases, while it vanishes in the last
case.

These results indicate that the role of umklapp processes
depends on the relationship between the number of compo-
nents n and the relative primes p and q characterizing the
commensurate filling. In what follows, this problem will be
studied first analytically in a bosonization approach and
large-n expansion technique, and then numerically using the
density-matrix renormalization-group �DMRG� method.

III. ANALYTICAL CONSIDERATIONS

A. Role of umklapp processes: A bosonization approach

Following the usual procedure, we write the Hamiltonian
�Eq. �1�� in momentum space and linearize the free-particle
spectrum around the two Fermi points �±kF�. The underlying
assumption is that the low-lying excitations determine the
physics of the system. Depending on whether the momentum
of the fermions is close to +kF or −kF, one can distinguish
left- and right-moving particles, and the interaction processes
can also be classified on the basis of whether the incoming
and scattered particles are right or left movers and the mo-
mentum transfer is small �forward scattering� or large, of the
order of 2kF �backward scattering�. In a generic model, the
strength of the various scattering processes may be different.
For the sake of simplicity, we neglect chiral processes in
which both particles move in the same direction before and
after the interaction since they lead to the renormalization of
the Fermi velocity only.

One can recognize that at generic fillings, where umklapp
processes do not play a role, the forward- and backward-
scattering processes can be interpreted as current-current in-
teractions and their contribution to the Hamiltonian density
can be conveniently rewritten using Dirac fermions30 in the
following short form �automatic summation for the repeated
indices is understood�:

Hint�x� = 1
2g�1�2�3�4

�̄�1
�x�	
��2

�x��̄�3
�x�	
��4

�x� . �5�

Here, �i denote the spin indices that can take the values
1 , . . . ,n, 	
 with 
=1,2 are the Dirac matrices, in our case

the standard Pauli matrices ��x ,�y�, and �̄�x�=�†�x�	1.
While the Hubbard model contains a single interaction pa-
rameter U, the couplings g�1�2�3�4

may be different for
physically different processes in more realistic models. In the
renormalization-group treatment, we will assume this to be
the case. It is assumed, however, that the spin of the fermions
does not change in the scattering process and the couplings
are symmetric under the exchange ��1 ,�2�↔ ��3 ,�4�. If the
fermion field ���x� is decomposed into left- and right-
moving components according to

���x� = �R��x�
L��x�

�, �̄��x� = �L�
†�x�,R�

†�x�� , �6�

the usual backward- and forward-scattering processes are, in
fact, recovered. In the standard g-ology31 notation, g������ is
denoted by −g1, and g������ by g2.

The well-known RG equations, the � function, can be
written for these scattering processes in a short form,30

� ln g�1�2�3�4

� ln ��/�
� ��1�2�3�4

= g�1�i�3�j
g�i�2�j�4

− g�1�i�j�4
g�i�2�3�j

, �7�

where � is the cutoff parameter. These RG equations have
been analyzed earlier2,7 and it was found that the backward-
scattering processes scale out at generic fillings in the SU�n�
Hubbard model and, for this reason, this model is equivalent
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FIG. 3. Same as Fig. 1 but for �a� n=3, f =2 /5, N=20 and �b�
n=4, f =1 /3, N=24.
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FIG. 4. �Color online� Same as Fig. 2 but for n=5. The solid
line is the finite-size-scaling fit.
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to an n-component Luttinger liquid in this case. The Hamil-
tonian can be diagonalized8 and the excitation spectrum
can be determined exactly in bosonic phase-field
representation.32 There is one symmetric combination of the
phase fields with different spin indices, this is the so-called
charge mode,

c�x� =
1
�n

�
�=1

n

��x� , �8�

while the n−1 antisymmetric combinations give the spin
modes,

ms�x� =
1

�m�m + 1�
��

�=1

m

��x� − mm+1�x�	 , �9�

with n=1, . . . ,n−1.
Similarly to the spin-charge separation in the two-

component Luttinger model, one finds complete mode sepa-
ration. The Hamiltonian density is the sum of the contribu-
tions of the individual modes,

H�x� = �
j

Hj�x� , �10�

where j=c ,1s ,2s , . . . , �n−1�s. Each term has the usual
bosonic form

Hj�x� =
�uj

2
�Kj�� j�x��2 +

1

�Kj
��x j�x��2� , �11�

where � j�x� is the momentum canonically conjugated to
 j�x�. The renormalized velocities and the Luttinger param-
eters can be given in terms of the new couplings g2;j appear-
ing after diagonalization8 in the spin indices

uj = vF
�1 − g2;j

2 , �12a�

Kj =�1 − g2;j

1 + g2;j
. �12b�

In a finite system, where the momentum is quantized in
units of 2� /L, the excitation spectrum of the Luttinger
model can be written as33

E = �
j

�uj
2�

L
�n+

j + n−
j + �+

j + �−
j � , �13�

where n±
j are integers describing the bosonic excitations and

�±
j =

1

16��KjJj ±
1

�Kj

�Nj�2

, �14�

where �Nj is the change in the number of particles in the jth
channel, and similarly Jj describes the current in the jth
channel created by adding particles to or removing them
from the branches of the dispersion relation.

The total momentum is given by

P = �kFJc + �
j

�
2�

L
�n+

j − n−
j + �+

j − �−
j � . �15�

Thus, soft modes appear not only at zero momentum but at
integer multiples of 2kF, too, since the charge current Jc is an
even number if the total charge is conserved. Since

2kF =
Nc

0

n

2�

L
, �16�

where Nc
0 is the number of particles in the system, and the

filling of the band is f =Nc
0 /nN, the position of these soft

modes depends on the filling only, 2kF=2�f .
We know that the usual umklapp processes, scattering of

two right movers into left-moving states or vice versa, which
were neglected so far, are relevant in a half-filled system for
any n.2,7 Multiparticle umklapp processes may become rel-
evant at other commensurate fillings. To see what kind of
processes are allowed, we have to take into account that the
total quasimomentum transferred in an umklapp process has
to be an integer multiple of 2�. If the band is f = p /q filled
and consequently kF= p� /q, q particles have to be scattered
from one Fermi point to the opposite one to satisfy this con-
dition. The term in the renormalized Hamiltonian that de-
scribes these processes is

HU = g3 �
�ki�,�ki��

�
��i�

ck1,�1

† ck2,�2

†
¯ ckq,�q

† ckq�,�q
¯ ck2�,�2

ck1�,�1
,

�17�

where

k1 + k2 + ¯ + kq = k1� + k2� + ¯ + kq� ± 2� . �18�

Due to Pauli’s exclusion principle, the spin indices
�1 ,�2 , . . . ,�q have to be different. Since there are n different
types of fermion in the SU�n� model, and the Hubbard inter-
action is local, only such umklapp processes are allowed in
which the number of scattered particles is less than or equal
to n. Thus, q-particle umklapp processes are forbidden in our
model when q�n. Figure 5 shows allowed umklapp pro-
cesses for the SU�3� model.

The role of multiparticle umklapp processes in the con-
ductivity of the SU�2� Hubbard model has been studied in
Ref. 34. A different aspect, whether the charge and spin
modes are coupled or not by the possible multiparticle um-
klapp processes, has been considered for the SU�n� model.9

The q-particle umklapp processes of Eq. �17� are described
in the bosonic phase-field representation by

HU = g3� dx �
��i��

cos�2��1
�x� + ¯ + �q

�x��� . �19�

The phase fields appearing here are the phases of the bosonic
representation of the particles participating in the scattering
process, and ��i�� indicates that all spin indices have to be
different.

This Hamiltonian can be expressed in terms of the phase
fields corresponding to the charge and spin modes, making
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use of the inverse of Eqs. �8� and �9�. It is clear that if
q=n, only the symmetric combination of the phase fields that
is the charge mode defined in Eq. �8� appears in Eq. �19�.
This means that in this case, the q-particle umklapp pro-
cesses couple to the charge mode only. The Hamiltonian den-
sity of the charge mode is identical to that of the well-known
sine-Gordon model which has a fully gapped excitation spec-
trum. Thus, the charge mode becomes gapped for finite U.
The n−1 spin modes are not influenced by the umklapp pro-
cesses in the 1 /n-filled case. They remain gapless and the
central charge is c=n−1.

When q�n, the sum of the q phase fields corresponding
to the q particles required for umklapp processes will contain
various combinations of the n boson fields, leading to a mix-
ing �coupling� of the charge and spin modes, thus opening
gaps in all modes. The model becomes noncritical for
U�Uc.

When, on the other hand, q�n, umklapp processes are
forbidden by Pauli’s exclusion principle when the interaction
is local. The charge and spin modes remain gapless; thus,
c=n for U�0. The expected behavior for different cases is
summarized in Table I.

B. Spatial inhomogeneity in the large-n limit of the SU„n…
Hubbard-Heisenberg model at one-third filling

We have seen that the spectrum is fully gapped when
q�n. The question naturally arises whether the opening of a
gap at multiples of k*=2kF is related to a breaking of the
translational symmetry, an instability against the formation

of a spatially inhomogeneous state with the corresponding
wave number.

To analyze the stability of the homogeneous state, we
generalize the procedure used by Marston and Affleck2 to the
one-third-filled case in the large-U limit. When n is an inte-
ger multiple of 3, the number of fermions sitting on each site
is an integer in a homogeneous sample, and a finite energy is
needed to add an extra particle. This energy gap at kF may
imply a tripling of the spatial period in the ground state. To
search for this spatial inhomogeneity, a more general model,
the SU�n� symmetric generalization of the Hubbard-
Heisenberg model, will be considered. Its Hamiltonian is

H = �
i=1

N �−
J

n
�

�,��=1

n

�ci,�
† ci+1,���ci+1,��

† ci,���

− t�
�=1

n

�ci,�
† ci+1,� + H.c.� +

U

n
��

�=1

n

ci,�
† ci,� −

n

3
�2	 .

�20�

The rationale underlying this generalization is that the inclu-
sion of an interaction between nearest neighbors allows us to
study states with nonuniform bonds. Although we are inter-
ested in models with n=3,4 , . . ., the behavior of the model
will be studied for large-n values since then the saddle-point
method can be applied. The chemical potential is shifted to
zero at one-third filling, and the Hubbard coupling U and
Heisenberg coupling J are rescaled by 2 /n so that the spac-
ing of the energy levels remain the same as n increases. We
note that the usual J��i,j�SiS j nearest-neighbor Heisenberg
interaction breaks up into three terms in the fermionic repre-
sentation of the spin operators. One of them only shifts the
chemical potential, another corresponds to the nearest-
neighbor Coulomb interaction �that is unimportant in the
large U limit�; therefore, they are neglected and only the
third is kept.

The equilibrium state will be determined from the mini-
mum of the free energy that can be derived from the partition
function of the system. In functional integral formalism, the
partition function can be expressed with the Lagrangian of
the model. At finite temperatures, the imaginary time La-
grangian is L�c ,c†�=�i,� ci,�

† �d /d��ci,�+H and the partition
function is

Z =� �dc��dc†�exp�− �
0

�

d�L�c,c†�� . �21�

Here, � is the inverse temperature. The integral occurring in
the above expression cannot be calculated in a simple way
due to the quartic terms in the Lagrangian. However, these
quartic terms can be eliminated by a Hubbard-Stratonovich
transformation based on the integral identity

exp�VX2� �� dY exp�− Y2/4V + XY� . �22�

In our case, the quantities corresponding to X are ��ci,�
† ci,�

and ��ci,�
† ci+1,�. Therefore, we have to introduce 2N bosonic

fields: i and �i,i+1. We note that the fields i and �i,i+1
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FIG. 5. �Color online� Umklapp processes in the SU�3� symmet-
ric Hubbard model. �a� Any two of the three types of fermion can be
scattered in the half-filled case. �b� Fermions with the three possible
spin orientations participate in the scattering process in the one-
third-filled case.

TABLE I. Central charge c and the type of phase characterized
by the number of soft modes in the charge and spin sectors �CxSy�
for the p /q-filled SU�n� Hubbard model.

n c Phase k*

q=n Any n n−1 C0S�n−1� 2�p /n

q�n n�2 — C0S0 2�p /q

q�n Any n n C1S�n−1� 2�p /q
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correspond2 to site- and bond-centered densities, respec-
tively.

Adding the appropriate terms to the Lagrangian gives

L�c,c†,,�� =
def

L�c,c†� +
n

U
�

i
�i

2
+ i

U

n ���

ci,�
† ci,� −

n

3�	2

+
n

J
�

i
� 1

2
�i,i+1 +

J

n
�
�

ci,�
† ci+1,��2

. �23�

The new Lagrangian is quadratic in the fields; however, the
fermionic fields are coupled to the bosonic ones. The explicit
form of the Lagrangian is

L�c,c†,,�� = �
i,�
ci,�

† � d

d�
+ ii�ci,� +

1

4J

�i,i+1
2

+ ���i,i+1 − t�ci,�
† ci+1,� + H.c.�

+
1

4U
i

2 − i
1

3
i� . �24�

The partition function is obtained by integrating over c and
c†,

Z�,�� =� �dc��dc†�exp�− �
0

�

d�L�c,c†,,��� . �25�

Writing it in the form Z� ,���exp�−Seff� ,���, this defines
the effective action. The free energy can be expressed in a
usual way via Z� ,�� as

F�,�� = − 1/� ln�Z�,��� . �26�

As mentioned in the previous subsection, if spatial oscil-
lations occur in the system, they are expected to appear with
wave number k*=2�f . Thus, we may expect a spontaneous
trimerization at one-third filling. Therefore, we suppose that
the boson field i takes three different values depending on
whether i=3l, i=3l+1, or i=3l+2 with integer l. They will
be denoted as 1, 2, and 3. Similar assumption holds for
the fields �i,i+1, too. The three values are �1, �2, and �3. The
lattice is thus decomposed into three sublattices.

To get a real free energy, the fields � ��=1,2 ,3� are
redefined by continuing to the complex plane �i�→��.
The free energy can then be written as

F����,����� =
1

3 �
�=1

3 �Nn

4J
��

2 +
Nn

4U
�

2 −
Nn

3
��

+
n

3�
k

�E�k� − 1/3� , �27�

and the summation for k has to be performed over the re-
duced Brillouin zone which is now one-third of the original
one �k runs from −� /3 to � /3� and E�k� is the energy spec-
trum of a single fermion coupled to the boson fields. It is the
eigenvalues of the Hamiltonian

H = �
i

����1 − t�ai
†bi+1 + ��2 − t�bi+1

† ci+2 + ��3 − t�ci+2
† ai+3

+ H.c.� + 1ai
†ai + 2bi+1

† bi+1 + 3ci+2
† ci+2� , �28�

where the operators a, b, and c belong to different sublat-
tices. In order to determine the one-particle spectrum, one
has to diagonalize the Hamiltonian �Eq. �28�� in momentum
space. Therefore, we are looking for the eigenvalues of the
matrix

� 1 ��1 − t�e−ik ��3 − t�eik

��1 − t�eik 2 ��2 − t�e−ik

��3 − t�e−ik ��2 − t�eik 3
� . �29�

The energy spectrum E�k� has three branches corresponding
to the three �real� solutions of the third-order eigenvalue
equation

E1�k� − �1 + 2 + 3�/3

= − sgn�Q��
P
 cos�1

3
cos−1�� Q

�
P
�3/2��	 , �30a�

E2,3�k� − �1 + 2 + 3�/3

= − sgn�Q��
P
 cos�1

3
cos−1�� Q

�
P
�3/2� ±
2�

3
�	 .

�30b�

Here, P and Q are the parameters in the eigenvalue equation

when transformed to the form Ẽ3�k�+ PẼ�k�+Q=0 with

Ẽ�k�=E�k�− �1+2+3� /3.
The minimum of the free energy of a system with such a

spectrum cannot be evaluated quite generally. Fortunately,
we are only interested whether the three � and �� are dif-
ferent or not. This analysis can be carried out easier in terms
of the linear combinations

 ª �1 + 2 + 3�/3, �31a�

�1 ª �1 − 2�/2, �31b�

�2 ª �1 + 2 − 23�/6, �31c�

and similar definitions for �, ��1, and ��2. One finds that
although the free energy has an extremum at �1=�2=0
and ��1=��2=0, the free energy of the uniform state is not
a local minimum. Thus, a density wave has to appear in the
system. We can conclude that the SU�n� Hubbard model is
unstable against the Heisenberg coupling in the large-n limit
and exhibits inhomogeneous spatial ordering for U�0.

From this analysis alone—due to the rather complicated
one-particle spectrum—we cannot decide whether the sys-
tem is dimerized, trimerized, or some other periodicity oc-
curs, and whether the density wave is site centered or bond
centered. It is natural to relate the nonuniform phase to the
fully gapped excitation spectrum. Thus, when our previous
considerations are taken into account, trimerized phase is
expected in one-third-filled models. This will be supported
by the numerical calculation. We will also see that the trim-
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erized phase is not a special feature of the systems with
integer number of electrons per site. It occurs in the one-
third-filled system for arbitrary n�3.

IV. NUMERICAL STUDY OF THE SPATIAL
INHOMOGENEITY

In this section, we present our numerical results obtained
by the DMRG35 method for the length dependence of the
block entropy sN�l� and its Fourier transform s̃�k� to relate
them to the number and position of soft modes when the
model is critical, or to spatial inhomogeneity of the ground
state for gapped models.

The spatial modulation of the ground state can be a site-
or a bond-centered density wave. A site-centered density
wave would manifest itself in an oscillation of the von Neu-
mann entropy of single sites, si, with i=1, . . ., N or in the
local electron density defined by

�ni� = �
a=1

n

��GS
ni,a
�GS� , �32�

where 
�GS� is the ground-state wave function. The wave
number of the charge oscillation can again be determined
from peaks in the Fourier transform of si or �ni� denoted as
s1�k� and n�k�, respectively.

The existence of a bond-centered density wave can be
demonstrated by studying the variation of the bond energy or
the two-site entropy along the chain. To avoid boundary ef-
fects, we have calculated the difference of two-site entropies
in the middle of the chain, between first, second, third, and
so on neighbor bonds,

Ds�N� = sN/2,N/2+1 − sN/2+1,N/2+2, �33a�

Ts�N� = sN/2,N/2+1 − sN/2+2,N/2+3, �33b�

Qs�N� = sN/2,N/2+1 − sN/2+3,N/2+4, �33c�

Ps�N� = sN/2,N/2+1 − sN/2+4,N/2+5. �33d�

For convenience, the number of sites in the chain was always
even. Moreover, since we expect dimerized, trimerized, or
tetramerized phases depending on the commensurate filling
p /q, the number of sites N was always taken to be an integer
multiple of q.

When a doubling of the lattice periodicity of the ground
state is indicated by a finite peak in 
s̃�k�
 at k*=�, a truly
dimerized phase gives equal finite values for Ds and Qs and
vanishing Ts and Ps in the N→� limit. Stronger and weaker
bonds alternate along the chain. When the peak in 
s̃�k�
 ap-
pears at k*=2� /3 and a trimerized phase is expected, Ts
should be finite and Qs should vanish. Symmetry consider-
ations imply that two equally strong bonds are followed by a
weaker or stronger bond in this case. In a tetramerized phase,
the peak in 
s̃�k�
 appears at k*=� /2, Ds, Ts, and Qs may be
finite in the N→� limit and only Ps vanishes necessarily.

A. Numerical procedure

The numerical calculations presented in this paper have
been performed on finite chains with open boundary condi-

tion �OBC� using the DMRG technique and the dynamic
block-state selection approach.36,37 We have set the threshold
value of the quantum information loss � to 10−5 for n=3, 4
and to 10−4 for n=5 and the minimum number of block states
Mmin to 256. In spite of the large number of degrees of free-
dom per site in the n=5 case, the entropy analysis allows one
to study this problem as well. The ground state has been
targeted using four to eight DMRG sweeps until the entropy
sum rule has been satisfied. The accuracy of the Davidson
diagonalization routine has been set to 10−7 and the largest
dimension of the superblock Hamiltonian was around
3�106. As an indication of the computational resources used
in the present work, we note that the maximum number of
block states was around 1600 for n=3 and 900 for n=4 and
5.

The large-N limit of the entropies and amplitudes of the
peaks in the Fourier spectrum can be obtained if appropriate
scaling functions are used. In a critical, gapless model, in
leading order, these are expected to scale to zero as 1 /N,
while in a noncritical model, the scaling function depends on
the boundary condition. Therefore, for any quantity A, the
finite-size-scaling ansatz,

A�N� = A0 + a/N�, �34�

is used to evaluate the data obtained with OBC, where A0, a,
and � are free parameters to be determined by the fit.

B. Numerical results

1. Models with q=n

The 1 /n-filled case �q=n� has already been considered in
Ref. 9 and some of the results were listed in Sec. II. As has
been shown in Fig. 1, sN�l� oscillates with period n for finite
systems. These oscillations are due to the soft modes located
at wave numbers k*=2� /n. Taking every nth value only,
sN�l� can be fitted accurately using �3� for relatively short
chains already if U is large. After a proper finite-size scaling,
the fit gives c=n−1, as expected.

Taking the Fourier transform of sN�l�, besides the large
positive peak at k=0, additional negative peaks are found at
the positions of the soft modes, at k*=�, 2� /3, � /4, and
2� /5 for n=2,3 ,4 ,5, respectively. Their amplitude van-
ishes, however, in the N→� limit. As a further check that
there are neither site- nor bond-centered oscillations in the
ground state, we have analyzed si, �ni�, and si,i+1. All Fourier
components of these quantities scale to zero in the thermo-
dynamic limit. As an example, the finite-size dependence of
n�k*� for n=3 and n=4 is shown in Fig. 6 at U=10.

When the finite-size scaling of Ds, Ts, and Qs is analyzed,
one finds that they all vanish in the thermodynamic limit, as
shown in Figs. 7–9 for U=10. All this shows that the ground
state of the 1 /n-filled SU�n� Hubbard model is spatially ho-
mogeneous; the translational symmetry is not broken.

2. Models with q�n

We have chosen as an example n=3 and f =2 /5. As seen
in Fig. 3�a�, the block entropy sN�l� oscillates with period 5.
When every fifth data points are fitted to �3�, c=3 is ob-
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tained. This indicates that the model remains critical for fi-
nite U as well. The finite peak in 
s̃�k�
 at k*=4� /5 is due to
soft modes. The amplitude of the peak disappears in the N
→� limit and the ground state of the system is uniform. This
is confirmed by the calculation of s̃�k*�, n�k*�, Ds, Ts, and Qs

shown in Figs. 2 and 6–9, respectively. There is neither a
site- nor a bond-centered oscillation in the occupation num-
ber or bond strength.

3. Models with q�n

One realization of this condition, the half-filled case for
n�2, has been studied by us earlier.9 It was found, as shown
in Fig. 1, that the block entropy oscillates with period 2 for
any n�2. The peak in 
s̃�k�
 at k*=� does not vanish in the
thermodynamic limit �see Fig. 2�. In agreement with this, Ds
and Qs are finite and converge to the same value, as shown in
Figs. 7 and 9, while Ts vanishes �see Fig. 8�. The same be-

havior is found in the n=5 model at half filling, as seen in
the upper panel of Fig. 10.

On the other hand, s1�k*� and n�k*� vanish in the thermo-
dynamic limit �see Fig. 6�. The translational symmetry of the
Hamiltonian is broken and the ground state of the half-filled
model is dimerized. Stronger and weaker bonds alternate
along the chain.

In the one-third-filled case of the n=4 and n=5 models
�q�n�, sN�l� oscillates with period 3 and the amplitude of
the Fourier component s̃�k*=2� /3� remains finite even for
N→� �see Figs. 2 and 4�. This indicates that the spatial
periodicity is tripled in the ground state. This is corroborated
by our results shown in Figs. 7–9 and the middle panel of
Fig. 10. Ds and Ts scale to the same finite value while Qs,
s1�k*� and n�k*� vanish. In the ground state, two bonds of
equal strength are followed by a weaker or stronger bond.

As a last example, we have studied the quarter-filled
SU�5� Hubbard chain. We found that 
s̃�k�
 scales to a finite
value at k*=� /4, as shown in Fig. 4. All Fourier components
of the site entropy and local charge density vanish for long
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SU(3), f=1/2, k*=π
SU(3), f=1/3, k*=2π/3
SU(3), f=2/5, k*=4π/5
SU(4), f=1/2, k*=π
SU(4), f=1/4, k*=π/2
SU(4), f=1/3, k*=2π/3

FIG. 6. �Color online� Finite-size dependence of n�k*� for vari-
ous n and fillings for U=10. The solid line is the finite-size-scaling
fit.
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FIG. 7. �Color online� Finite-size dependence of Ds for various
n and fillings for U=10. The solid line is the finite-size-scaling fit.
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FIG. 8. �Color online� Finite-size dependence of Ts for various n
and fillings for U=10. The solid line is the finite-size-scaling fit.
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FIG. 9. �Color online� Finite-size dependence of Qs for various
n and fillings for U=10. The solid line is the finite-size-scaling fit.
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chains, while Ds, Ts, and Qs scale to finite values. Only Ps
scales to zero, as shown in the lower panel of Fig. 10. The
ground state is a bond-ordered tetramerized state. Figure 11
shows schematically the periodic modulation of the bond
strength along the chain for half-, one-third-, and quarter-
filled models.

V. CONCLUSION

To study the role of multiparticle umklapp processes, we
have treated the one-dimensional SU�n� Hubbard model ana-
lytically by bosonization approach and numerically using the
DMRG method for n=3, 4, and 5 for commensurate fillings
f = p /q, where p and q are relative primes.

Our results confirm that umklapp processes play essen-
tially different roles depending on the relationship between
q and n. When q=n �this is the case in the 1 /n-filled case�,

the charge and spin modes are not coupled, and the umklapp
processes open the gap only in the spectrum of charge
modes. The system remains critical with n−1 gapless spin
modes, the central charge is c=n−1, and the translational
symmetry of the Hamiltonian is not broken in the ground
state.

When q�n, the leading-order umklapp processes are for-
bidden in the model with local interaction by Pauli’s exclu-
sion principle. The model is equivalent to an n-component
Luttinger liquid with c=n and the ground state is spatially
uniform for U�0.

When, however, q�n, the charge and spin modes are
coupled by the umklapp processes and the gap opens in the
spectrum of all modes. Even more interestingly, a spatially
nonuniform ground state emerges whose periodicity depends
on the filling. Half-filled models develop a dimerized ground
state, trimerized state appears in one-third-filled models, and
the ground state is tetramerized in quarter-filled models.
Other periodicities would probably be found at other fillings.
Our findings are summarized in Table II, which can be com-
pared to the analytical results given in Table I.

We emphasize that our calculations were performed at a
relatively large value of U, where the nonuniformity of the
ground state is well developed, and the finite value of the
dimer, trimer, or tetramer order parameter can easily be de-
tected. We conjecture, based on our earlier calculations,9 that
the critical value Uc above which the nonuniform phase ap-
pears is Uc=0.
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TABLE II. Central charge and spatial inhomogeneity for the
p /q-filled SU�n� Hubbard chain. k* in the last column gives the
wave number of soft modes when the model is critical, while it
gives the wave number of the nonuniform ground state when the
model is gapped.

n p /q c Periodicity k*

q=n 2 1 /2 1 Unform �

3 1 /3 2 Uniform 2� /3

4 1 /4 3 Uniform � /2

5 1 /5 4 Uniform 2� /5

q�n 3 1 /2 Dimerized �

4 1 /2 Dimerized �

4 1 /3 Trimerized 2� /3

5 1 /2 Dimerized �

5 1 /3 Trimerized 2� /3

5 1 /4 Tetramerized � /2

q�n 3 2 /5 3 Uniform 4� /5

Half−filled Dimerized

One−third−filled Trimerized

Quarter−filled Tetramerized

FIG. 11. �Color online� Schematic plot of the local bond
strength in half-, one-third-, and quarter-filled SU�5� Hubbard
chains.
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FIG. 10. �Color online� Finite-size dependence of Ds, Ts, Qs,
and Ps for the half-, one-third-, and quarter-filled one-dimensional
SU�5� Hubbard models at U=10.
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